Sentence Level Discourse Parsing using Syntactic and Lexical Information
نویسندگان
چکیده
We introduce two probabilistic models that can be used to identify elementary discourse units and build sentence-level discourse parse trees. The models use syntactic and lexical features. A discourse parsing algorithm that implements these models derives discourse parse trees with an error reduction of 18.8% over a state-ofthe-art decision-based discourse parser. A set of empirical evaluations shows that our discourse parsing model is sophisticated enough to yield discourse trees at an accuracy level that matches near-human levels of performance.
منابع مشابه
Sentential Structure And Discourse Parsing
In this paper, we describe how the LIDAS System (Linguistic Discourse Analysis System), a discourse parser built as an implementation of the Unified Linguistic Discourse Model (U-LDM) uses information from sentential syntax and semantics along with lexical semantic information to build the Open Right Discourse Parse Tree (DPT) that serves as a representation of the structure of the discourse (P...
متن کاملExploiting Event Semantics to Parse the Rhetorical Structure of Natural Language Text
Previous work on discourse parsing has mostly relied on surface syntactic and lexical features; the use of semantics is limited to shallow semantics. The goal of this thesis is to exploit event semantics in order to build discourse parse trees (DPT) based on informational rhetorical relations. Our work employs an Inductive Logic Programming (ILP) based rhetorical relation classifier, a Neural N...
متن کاملبررسی مقایسهای تأثیر برچسبزنی مقولات دستوری بر تجزیه در پردازش خودکار زبان فارسی
In this paper, the role of Part-of-Speech (POS) tagging for parsing in automatic processing of the Persian language is studied. To this end, the impact of the quality of POS tagging as well as the impact of the quantity of information available in the POS tags on parsing are studied. To reach the goals, three parsing scenarios are proposed and compared. In the first scenario, the parser assigns...
متن کاملAn improved joint model: POS tagging and dependency parsing
Dependency parsing is a way of syntactic parsing and a natural language that automatically analyzes the dependency structure of sentences, and the input for each sentence creates a dependency graph. Part-Of-Speech (POS) tagging is a prerequisite for dependency parsing. Generally, dependency parsers do the POS tagging task along with dependency parsing in a pipeline mode. Unfortunately, in pipel...
متن کاملبرچسبزنی نقش معنایی جملات فارسی با رویکرد یادگیری مبتنی بر حافظه
Abstract Extracting semantic roles is one of the major steps in representing text meaning. It refers to finding the semantic relations between a predicate and syntactic constituents in a sentence. In this paper we present a semantic role labeling system for Persian, using memory-based learning model and standard features. Our proposed system implements a two-phase architecture to first identify...
متن کامل